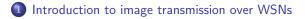
Error Resilient Image Communication with Chaotic Pixel Interleaving for Wireless Sensor Networks

Cristian Duran-Faundez and Vincent Lecuire {Cristian.Duran,Vincent.Lecuire}@cran.uhp-nancy.fr

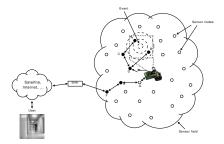
Research Centre for Automatic Control (CRAN), Nancy-University, CNRS, France



april 1st, 2008

Planning

- 2 Pixel interleaving for robust image transport
- 3 Experimentation and analysis results
- 4 Conclusion and Future work



Camera sensor networks Current camera devices Reference platform Constraints

Introduction to image transmission over WSNs Camera sensor networks

• A wireless sensor network where one or several nodes have image sensors (cameras).

- Applications
 - Surveillance and object recognition
 - Localisation and object tracking
 - Counting

Camera sensor networks Current camera devices Reference platform Constraints

Introduction to image transmission over WSNs

(a) Cyclops camera (UCLA & Agilent) on Mica2 mote

(b) Aloha imager (Johns Hopkins University) on Mica2 mote

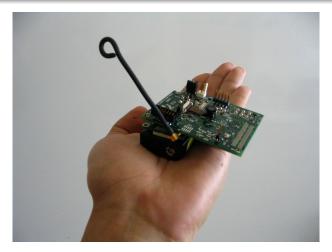

(c) Cmucam3 (Carnegie Mellon University) on Tmote

Figure: Different current camera devices for sensor networks

Camera sensor networks Current camera devices Reference platform Constraints

Introduction to image transmission over WSNs

5/25

Figure: The Cyclops camera

Camera sensor networks Current camera devices Reference platform Constraints

Introduction to image transmission over WSNs Reference platform

Figure: The Cyclops camera

Technical features

- Capture of images in selectable formats and resolutions
- ADCM-1700 CMOS imager
- ATMEL ATmega128L micro-controller (128KB memory program and 4KB SRAM)
- OPLD
- SRAM (64KB)
- Flash memory (512KB)
- 51-pin connector to interface with Mica2/MicaZ motes

Camera sensor networks Current camera devices Reference platform Constraints

Introduction to image transmission over WSNs Constraints

• Low available resources (for processing, storage, etc.)

Camera sensor networks Current camera devices Reference platform Constraints

Introduction to image transmission over WSNs Constraints

- Low available resources (for processing, storage, etc.)
- Big reported data losses

Camera sensor networks Current camera devices Reference platform Constraints

Introduction to image transmission over WSNs Constraints

- Low available resources (for processing, storage, etc.)
- Big reported data losses
- Large amount of data (to process/transmit) ⇒ Big energy consumptions & time!!

Camera sensor networks Current camera devices Reference platform Constraints

Introduction to image transmission over WSNs

- Low available resources (for processing, storage, etc.)
- Big reported data losses
- Large amount of data (to process/transmit) ⇒ Big energy consumptions & time!!

Typical effects of packet losses Traditional error control methods Pixel interleaving principles Torus Automorphisms

Pixel interleaving for robust image transport

Typical effects of packet losses

	2	3	4	5	6
68	164	162	164	155	146
69	148	162	162	162	139
70	164	162	Х	146	146
71	148	162	148	157	139
72	164	162	164	157	146

Typical effects of packet losses Traditional error control methods Pixel interleaving principles Torus Automorphisms

Pixel interleaving for robust image transport

Typical effects of packet losses

	2	3	4	5	6
68	164	162	164	155	146
69	148	162	162	162	139
70	164	162	Х	146	146
71	148	162	148	157	139
72	164	162	164	157	146

 \Rightarrow Error concealment method: Mean of well received pixels

	2	3	4	5	6
68	164	162	164	155	146
69	148	162	162	162	139
70	164	162	158	146	146
71	148	162	148	157	139
72	164	162	164	157	146

8 / 25

 \Rightarrow

(The original value was 162)

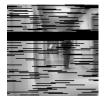
Typical effects of packet losses Traditional error control methods Pixel interleaving principles Torus Automorphisms

Pixel interleaving for robust image transport Typical effects of packet losses

Normally, several pixels are lost per each lost packet

⇒ Error concealment method

Typical effects of packet losses Traditional error control methods Pixel interleaving principles Torus Automorphisms


 \Rightarrow

Pixel interleaving for robust image transport Typical effects of packet losses

In a real scenario, packet losses can reach a 40% or even more

Original image

Received raw image with 29% of data losses

Typical effects of packet losses Traditional error control methods Pixel interleaving principles Torus Automorphisms

Pixel interleaving for robust image transport Traditional error control methods

Traditional techniques for correction of errors like FEC or ARQ can be very expensive in terms of resource consumptions.

Method	Energy	Time	
No ARQ	2307 mJ	29.55 sec	
ARQ	3690 mJ	48.95 sec	* With no losses

In the presence of losses, these results can be greatly increased.

Typical effects of packet losses Traditional error control methods **Pixel interleaving principles** Torus Automorphisms

Pixel interleaving for robust image transport

Pixel interleaving principles

Pixel interleaving

• For each position pixel (x, y) calculate a new position (x', y')

 \Rightarrow

• If we loss one packet, losses pixels wont be neighbors

<i>I</i> _{0,0}	<i>I</i> _{0,1}	<i>I</i> _{0,2}	<i>I</i> _{0,3}	
$I_{1,0}$	$I_{1,1}$	$I_{1,2}$	$I_{1,3}$	
I _{2,0}	$I_{2,1}$	I _{2,2}	$I_{2,3}$	
I _{3,0}	I _{3,1}	I _{3,2}	I _{3,3}	

 \Rightarrow

<i>I</i> 0,0	I _{2,1}	I 0,2	I _{2,3}	
$I_{1,2}$	I _{3,3}	<i>I</i> _{1,0}	I _{3,1}	
I _{2,0}	<i>I</i> _{0,1}	I _{2,2}	I _{0,3}	
I _{3,2}	<i>I</i> _{1,3}	I _{3,0}	I _{3,3}	

Х	<i>I</i> _{0,1}	Х	I _{0,3}	
<i>I</i> _{1,0}	$I_{1,1}$	$I_{1,2}$	$I_{1,3}$	
$I_{2,0}$	Х	I _{2,2}	I _{2,3}	
I _{3,0}	$I_{3,1}$	I _{3,2}	I _{3,3}	

Typical effects of packet losses Traditional error control methods **Pixel interleaving principles** Torus Automorphisms

Pixel interleaving for robust image transport

Pixel interleaving principles

Pixel interleaving

• For each position pixel (x, y) calculate a new position (x', y')

 \Rightarrow

• If we loss one packet, losses pixels wont be neighbors

<i>I</i> _{0,0}	<i>I</i> _{0,1}	<i>I</i> _{0,2}	<i>I</i> _{0,3}	
$I_{1,0}$	$I_{1,1}$	$I_{1,2}$	$I_{1,3}$	
I _{2,0}	$I_{2,1}$	I _{2,2}	$I_{2,3}$	
I _{3,0}	I _{3,1}	I _{3,2}	I _{3,3}	

<i>I</i> 0,0	I _{2,1}	I 0,2	I _{2,3}	
$I_{1,2}$	I _{3,3}	<i>I</i> _{1,0}	I _{3,1}	
$I_{2,0}$	<i>I</i> _{0,1}	<i>I</i> _{2,2}	<i>I</i> _{0,3}	
I _{3,2}	$I_{1,3}$	I _{3,0}	I _{3,3}	

	Х	<i>I</i> _{0,1}	Х	I _{0,3}	
	$I_{1,0}$	$I_{1,1}$	$I_{1,2}$	$I_{1,3}$	
>	$I_{2,0}$	Х	I _{2,2}	$I_{2,3}$	
	I _{3,0}	$I_{3,1}$	I _{3,2}	I _{3,3}	

Good idea!! Problem: Which method to apply?

12 / 25

Error Resilient Image Communication with Chaotic Pixel Interleaving for WSNs

Typical effects of packet losses Traditional error control methods Pixel interleaving principles Torus Automorphisms

Pixel interleaving for robust image transport

Torus Automorphisms

Torus Automorphism

$$\binom{x'}{y'} = \begin{pmatrix} 1 & 1 \\ k & k+1 \end{pmatrix}^n \binom{x}{y} \mod N$$

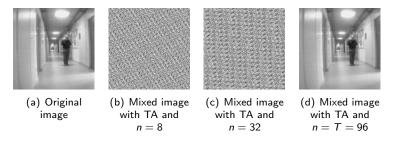
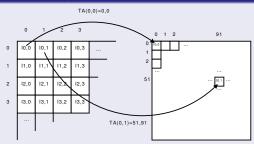


Figure: TA applied over a 128×128 'Corridor' image (k = 1).

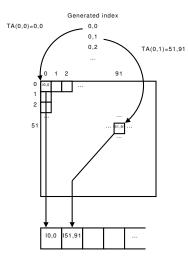

13/25

Error Resilient Image Communication with Chaotic Pixel Interleaving for WSNs

Typical effects of packet losses Traditional error control methods Pixel interleaving principles Torus Automorphisms

Pixel interleaving for robust image transport

Problem with classical implementation


- We need additional memory to store the mixed image
- TA transform must be completed before starting the packetization process.

Adapting TA to camera sensor nodes Experimental platform Implementation details Results

Experimentation and analysis results

Adapting TA to camera sensor nodes

Adapted TA-based pixel interleaving			
1: $i \leftarrow 0$ {position of data in packet}			
2: $H \leftarrow ImageHeight, W \leftarrow ImageWidth$			
3: for $y = 0$ to $H - 1$ do			
4: for $x = 0$ to $W - 1$ do			
5: Calculate (x', y') of position			
(x, y) using TA			
6: $Packet.data[i] \leftarrow I[x', y']$			
7: if (packet is full) or $((x, y) =$			
(W - 1, H - 1)) then			
8: Send packet			
9: $i \leftarrow 0$			
10: else			
11: $i \leftarrow i+1$			
12: end if			
13: end for			
14: end for			

Adapting TA to camera sensor nodes Experimental platform Implementation details Results

Experimentation and analysis results Experimental platform

Figure: Experimental topology

Adapting TA to camera sensor nodes Experimental platform Implementation details Results

Experimentation and analysis results

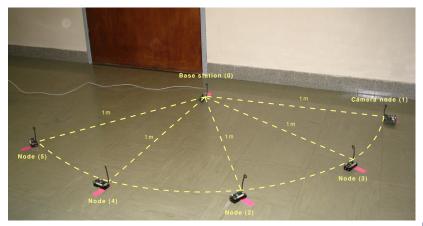


Figure: Experimental topology

Adapting TA to camera sensor nodes Experimental platform Implementation details Results

Experimentation and analysis results

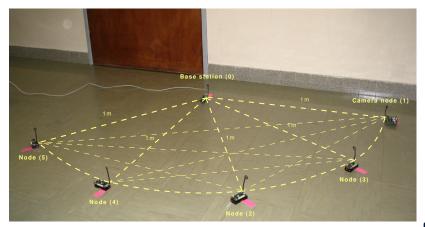


Figure: Experimental topology

Adapting TA to camera sensor nodes Experimental platform Implementation details Results

Experimentation and analysis results

Figure: Experimental topology

Adapting TA to camera sensor nodes Experimental platform Implementation details Results

Experimentation and analysis results

- Implementation in TinyOS 1.x
- Data payload of 29 bytes composed of a 2-byte header and 27 bytes to send image data
- For TA:
 - Small values for n and k (we chosed k = 1 and n = 8)
 - We inserted the pre-calculated matrix $A = \begin{pmatrix} 1 & 1 \\ k & k+1 \end{pmatrix}^n$

Adapting TA to camera sensor nodes Experimental platform Implementation details Results

Experimentation and analysis results Results

Energy / Time consumptions

- $\bullet\,$ Transmission of a 8-bit monochrome 128×128 image
- Source's power out: -20dBm

Method	Energy consumption	Execution time
No processing	2307 mJ	29.55 sec
TA	2374 mJ	30.2 sec
ARQ-based	3690 mJ	48.95 sec

 \implies TA computation consumes only 4 μ J and 40 μ s per pixel

Adapting TA to camera sensor nodes Experimental platform Implementation details Results

Experimentation and analysis results Results

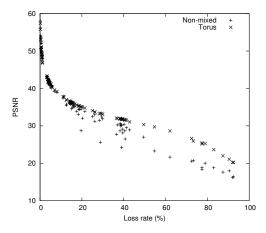


Figure: Non-mixed vs. Mixed comparison

Adapting TA to camera sensor nodes Experimental platform Implementation details Results

Experimentation and analysis results Results

Image quality visualization for a loss rate of 20.27%

VS.

No-mixed image

Mixed image

Adapting TA to camera sensor nodes Experimental platform Implementation details Results

Experimentation and analysis results Results

Image quality visualization for a loss rate of 40.18%

VS.

No-mixed image

Mixed image

Adapting TA to camera sensor nodes Experimental platform Implementation details Results

Experimentation and analysis results Results

Image quality visualization for a loss rate of 62.1%

VS.

No-mixed image

Mixed image

Adapting TA to camera sensor nodes Experimental platform Implementation details Results

Experimentation and analysis results Results

Image quality visualization for a loss rate of 83.03%

VS.

No-mixed image

Mixed image

Conclusion and Future work

Conclusions

- High probability to receive enough information to recover lost data.
- Good execution time and energy consumption on a wireless camera node,
- Increasing on the quality of transmitted images even with high loss rates
- No need of additional memory allocations, complex calculations, redundancy or retransmissions.

Future work

- Analysis of TA and other interleaving techniques.
- Low-complexity compression (block-based method).
- Evaluations in real multi-hop platforms.

Thank you!!

Error Resilient Image Communication with Chaotic Pixel Interleaving for Wireless Sensor Networks

Cristian Duran-Faundez and Vincent Lecuire {Cristian.Duran,Vincent.Lecuire}@cran.uhp-nancy.fr

Research Centre for Automatic Control (CRAN), Nancy-University, CNRS, France

